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Abstract.  One of the main attractions of non-relational "NoSQL" databases is their 
ability to scale to large numbers of readers, including readers spread over a wide area.  
The Frontier  distributed database caching system, used in production by the Large 
Hadron Collider CMS and ATLAS detector projects for Conditions data, is based on 
traditional  SQL  databases  but  also  adds  high  scalability  and  the  ability  to  be 
distributed  over  a  wide-area  for  an  important  subset  of  applications.  This  paper 
compares the major characteristics of the two different approaches and identifies the 
criteria for choosing which approach to prefer over the other.   It also compares in 
some detail the NoSQL databases used by CMS and ATLAS: MongoDB, CouchDB, 
HBase, and Cassandra.

1. Introduction
This  paper  compares  the  Frontier  Distributed  Database  Caching  System [1]  to  several  “NoSQL” 
Database Management Systems.  The goal of the paper is to increase familiarity with all of them to 
help the right tool to be chosen for each application.

Experience with using these systems is described from the two largest detector experiments from 
the Large Hadron Collider (LHC): CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC 
ApparatuS).  The applications in both experiments that use the Frontier system load what is called  
Conditions data, which are primarily detector alignments and calibrations that need to be loaded to  
every processor that examines particle collision events.

Section 2 describes common characteristics of NoSQL databases.  Section 3 introduces a common 
effect that leads to typical requirements on distributed client-server systems, called the Slashdot Effect, 
which is background for the remaining sections.  Section 4 describes the characteristics of the Frontier 
Distributed  Caching  System.   Section  5  gives  examples  of  Frontier  deployments  for  the  CMS 
experiment's Conditions data, both Offline and Online.  Section 6 compares Frontier to NoSQL in 
general,  and  Section  7  compares  Frontier  to  the  specific  NoSQL database  management  systems 
MongoDB, CouchDB, HBase, and Cassandra.

2. Common Characteristics of NoSQL Databases
The name “NoSQL” is used to refer to a large variety of Database Management Systems (DBMS) with 
many different characteristics.   This section describes some of the most common characteristics.

2.1. Non-relational
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The primary  unifying  characteristic  is  something  they  are  not:  they  are  not  traditional  Relational  
Database Management Systems (RDBMS).   RDBMS store data in a structured tables, where rows 
each have predefined column names and types.   The predefined structures are also called “schemas.”
     NoSQL systems, on the other hand, generally allow more flexibility in the structure of data.  They 
usually have keys which can return any arbitrary data for different values of a key, including possibly  
other keys that are nested.   As long as the application program knows how to handle the flexible 
results, the database doesn't care.   Many of the systems allow also specifying some structure to the  
data in order to improve performance with indexing.

As a result of the flexible structure, most of the NoSQL systems then do not support the standard 
RDBMS Structured Query Language, or SQL.  Some of them do support it for compatibility with 
existing  applications,  however,  since  the  row/column  structure  is  a  subset  of  the  more  general 
key/value structure.

2.2. Distributed
One of the most attractive characteristics of popular NoSQL systems is that they are able to distribute 
their  data  across  a  large  number  of  commodity  computers,  both  at  local  and  remote  locations.  
Through that they achieve both fault tolerance and high scalability.   This enables them to reliably 
scale to large numbers of read operations and, in many cases, also of write operations.

2.3. Eventual Consistency
In order to perform well in a distributed environment, most (but not all) of the NoSQL systems give up 
atomic operations in favor of eventual consistency.   That is, instead of providing ACID (Atomic,  
Consistent, Isolated and Durable) transactions, they provide BASE (Basic-Availability, Soft-State, and 
Eventual  Consistency).   Whether  or  not  this  is  acceptable  depends  on  the  application;  many 
applications do fine with BASE but others need ACID [2].

3. The Slashdot Effect
A frequent requirement on client-server applications is the ability to handle reading the same data from 
a very large number of different clients.  The “Slashdot Effect,” also known as “slashdotting,” occurs 
when a popular website includes a hyperlink to a much smaller website and many people click on the 
link at around the same time and overwhelm relatively small web servers.  The term was coined in the  
early days of the technical news aggregator “slashdot.org” after it became popular [3]. 

Companies  typically  handle  the Slashdot  Effect  for their  web service  with a Content  Delivery  
Network (CDN), either by contract or by owning their own.  A CDN provides multiple servers around 
the world that either cache web sites or contain copies of them.  That way the  client requests get 
distributed among a large number of servers and no one server becomes overloaded.

Some database applications have a similar requirement to handle many readers of the same data at 
about the same time. 

4. Frontier Characteristics
The Frontier Distributed Database Caching system (hereafter referred to as Frontier or Frontier/Squid) 
was designed to handle the Slashdot Effect for applications that use Relational Database Management 
Systems;  that  is,  those  applications  that  have  many  readers  of  the  same data,  and  relatively  few 
writers.  The following are some of its characteristics.

• It distributes read-only SQL queries; it is not a NoSQL system.  That brings the advantages of 
using  long-supported  and  well-understood  RDBMS  as  the  backend  database,  with  all  its  
stability, strong support, and existing software.

• Its protocol follows the REST (REpresentational State Transfer) specification of HTTP, so it is  
easily cacheable with standard web proxies [4].  The current deployments use the popular open 
source caching web proxy called Squid [5].



• Squids are deployed within the Local Area Networks of the clients.  This makes an ideal Content 
Delivery Network because most of the traffic goes on the high capacity, low latency LANs.  
This is an ideal CDN also because web proxy caches are practically maintenance-free; once 
they are configured and started, they require very little intervention.

• When there are simultaneous requests for the same data using the same web proxy cache, Squid 
can  collapse  them  into  a  single  request  to  the  upstream  server  (if  the  non-default  option 
collapsed_forwarding is  turned on).  If the requests for the same data come close together but 
not  at  the same time,  the data is served from the local  cache and the upstream server isn't  
contacted at all.

• When there are more simultaneous different requests than a small configurable number, those 
requests are queued at the Frontier servers.  This slows down the clients that are waiting for the  
data but avoids overloading the database servers.  (The queue sizes are also limited and in CMS 
the operators are notified when one of them is nearly full [6].  In practice the queueing is only 
used for short periods of time each day).

5. Frontier/Squid Deployment Examples
The current  version of the Frontier/Squid system is deployed in production in three High Energy 
Physics applications at the Large Hadron Collider.  They all distribute “conditions” data, which are 
mainly  detector  alignments  and calibrations.   All  the  worldwide  jobs  that  are  processing  particle 
collision events need to read the conditions from the detectors which were valid at the time of the 
collisions.   Since related  events  tend to  be processed close together,  usually there are many jobs  
reading the same conditions data at about the same time.  The three deployments are for CMS Offline,  
CMS Online, and ATLAS Offline.  The remainder of this section will take a closer look at the first two 
and at the limits of the components of the Frontier/Squid system.

5.1. Frontier/Squid Deployment Example: CMS Offline Conditions
Figure 1 shows the architecture of the CMS Offline Conditions deployment of Frontier/Squid.

Figure 1:  CMS Offline Conditions Frontier/Squid deployment architecture
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In this deployment, a highly-available Oracle RDBMS and 3 Frontier servers are at CERN.  Each 
Frontier server runs an open source java Tomcat [7] process that contains Frontier servlets.   Each  
servlet reads from the RDBMS using SQL and converts the responses into HTTP/REST cacheable 
responses.  On the same server machine there is a reverse-proxy Squid which caches the responses.  
Then at each site, both locally at the CERN Tier 0 site and at each of the approximately 100 Tier 1,  
Tier 2, and Tier 3 sites there are more Squids to cache the responses locally.  CMS software running on 
each of the worker nodes in the compute farms, which include a frontier client library, converts the 
responses  back  from  HTTP  to  SQL  responses.   Note  that  the  only  custom  software  in  the 
Frontier/Squid system is the servlet in Tomcat and the frontier client library.  Currently the only CMS 
Offline Frontier servers are at CERN, but CMS is working on replicating the database and servers at  
another site for increased availability.

This system handles an average of about 500,000 total requests per minute total worldwide by all 
of the approximately 100 distributed Squids, and an average of 500 Megabytes per second. That may 
not seem like very much, but because conditions are mostly loaded near the beginning of jobs, and 
related jobs tend to start together at sites, peaks on individual squids are often significantly higher than 
their  average,  by a factor of 5 or more.  (Also,  these numbers don't  include Tier  3 sites because 
statistics from them are not collected together, but they tend to be relatively small anyway.)

By contrast, the 3 central Frontier servers at CERN see a total average of 4,000 requests per minute 
and deliver an average of 0.5 Megabytes per second.  That is a factor of 125 improvement on requests  
and a factor of 1000 improvement on bandwidth.  The difference in improvement is primarily because  
of  the  If-Modified-Since  caching  policy  that  is  used,  where  a  majority  of  the  time  only  small 
timestamp checks need to be done and then cached items can be reused if nothing has changed.  A 
majority of those requests are satisfied by the Frontier servlet without having to contact the database 
[8].

5.2. Frontier/Squid Deployment Example: CMS Online Conditions
Figure 2 shows the architecture of the CMS Online Conditions deployment of Frontier/Squid.

Figure 2:  CMS Online Conditions Frontier/Squid deployment architecture
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5.3. Limits of Frontier Tomcat servlets and Squids
In general the limits on Frontier Tomcat servlets and Squids, at least with applications similar to CMS 
Conditions,  are the network capacities of their host machines, not the CPU or disk. 

Frontier Tomcat servlets were recently measured on a 3-year old 8-core machine (with Xeon L5420 
cpus at 2.5Ghz) to be able to easily saturate a 1 Gigabit network out when reading from an Oracle  
database  without  compressing  the  result.   With  gzip  compression  of  the  output,  however,  the 
maximum output rate drops to 25 Megabytes per second while fully utilizing all of the 8 cpu cores. 
On the other hand, it saves much bandwidth later in the caches. In production, demand on the CMS 
Offline Frontier servers is so light that even with gzip compression the servers run on 2-core Virtual  
Machines and are still always lightly loaded.

Squid was measured two years ago on a machine that was new at the time (with Xeon E5430 cpus at  
2.66Ghz) to saturate two bonded 1 Gigabit network connections with one single-thread Squid.  It was 
also measured recently on a modern machine (with Opteron 6140 cpus) with a 10 Gigabit network 
connection to send up to 7 Gigabits with a single-thread Squid.  We are still using a single-threaded 
Squid2 version because the multi-threaded Squid3 does not yet properly implement If-Modified-Since 
(Squid3 was a total rewrite in a different programming language).  If that does not get fixed soon, we 
can instead run two Squid2s listening on the same port and in that way saturate a 10 Gigabit network, 
at a cost of being unable to share the disk cache.  Since Squid disk caches for this application do very  
well with 100GB of space, doubling that space is not difficult. 

6. Comparison between Frontier and NoSQL in general
Now that Frontier has been examined in detail and NoSQL in general has been introduced, the two 
systems can be compared. 

6.1. Database structure
Frontier uses the Relational DBMS row/column structure which has the advantages of being able to 
use a database with long experience and support.  NoSQL databases use nested key/value structure 
which gives flexibility of data layout.

6.2. Consistency
Both Frontier  and NoSQL databases  provide  eventual  consistency in the data.   In Frontier's  case  
writers always see a consistent database, but readers don't  always see it  because of varying cache 
delays.  Applications have to be tolerant of delays for both Frontier and NoSQL.

6.3. Write model
Frontier has only central writing into the Relational database but NoSQL databases generally support  
distributed writing.  Depending on the application that may be important.

6.4. Read model
Frontier supports best many readers of the same data items.  NoSQL databases in general support the  
simultaneous reading of many different data items better than Frontier does, because they can have the 
data replicated at more servers.

6.5. Data model
In the data distribution model of Frontier, the data is stored centrally and then cached on demand in the 
distributed elements.  In NoSQL databases the data is generally sent ahead of time to the distributed 
elements, with copies of the data stored there permanently.  The Frontier system can have a small 
number of replicas of all the data distributed for reliability as well.



6.6. Distributed elements
The distributed elements in the Frontier system are general purpose web proxy caches that can also be  
used for other applications.  With NoSQL databases the distributed elements are special purpose for  
only that database. 

Table 1 summarizes the comparisons.

Table 1: Comparisons between Frontier and NoSQL in general

Frontier NoSQL in general

DB structure Row/column Nested key/value

Consistency ACID DB, eventual read Eventual

Write model Central writing Distributed writing

Read model Many readers same data Read many different data

Data model
Central data,

cache on demand
Distributed data, copies

Distributed 
elements

General purpose Special purpose

7. Comparisons With Specific NoSQL DBMS
In this section specific NoSQL systems will be reviewed and compared.  The chosen systems are all  
currently used in production in some capacity for either the CMS or ATLAS experiments.  They are 
MongoDB, CouchDB, Hadoop HBase, and Cassandra.

7.1. MongoDB
The name for MongoDB came from “mongo” for “humongous” 
because  it  was  intended  to  support  big  databases  cheaply. 
MongoDB stores  binary  JavaScript  Object  Notation  (JSON). 
JSON  is  a  very  common,  compact  method  of  storing  and 
exchanging arbitrarily structured data.

MongoDB is more like a standard RDBMS than the other NoSQL systems considered in this paper.  
It allows any field to be of predefined type and memory-indexed for performance.  It also has very 
flexible queries similar to SQL: queries by fields, ranges, and regular expressions.  Only one server is 
allowed to write any particular data item; a few read-only copies on other servers can be stored and 
any one of them can take over as the master,  if  the master goes down.  Scaling is then done by  
sharding, where different data items are distributed among multiple servers.  Note that this does not do 
well with the Slashdot Effect because each data item is never on more than a small number of servers.

CMS uses MongoDB in production for its Data Aggregation Service [9].  They needed the dynamic 
structure and liked MongoDB's other features.  It is a very small installation, however, on only one  
server.

MongoDB  supports  MapReduce,  where  user-defined  processing  can  be  distributed  across  the 
servers that have replicas of the data.  An ATLAS evaluation, however, found that it didn't work very 
well; that feature is reported to work better in the current version 2 of MongoDB [10].



7.2. CouchDB
CouchDB, like MongoDB, stores JSON objects.  It has the very 
interesting characteristic of using a REST-compliant interface for 
reading and writing the database.  This means that, like Frontier, it 
can  be  deployed  with  web  proxies  wherever  the  application 
requires it, thus handling the Slashdot Effect well.  The RESTful 
interface also makes it easy to insert standard proxies for other 
purposes  including  supporting  a  large  variety  of  authentication 
methods.

Once it is configured, CouchDB automatically replicates all the data to all servers.  This can be 
very useful when the amount of data is relatively small but is impractical for very large databases and 
a large number of replicas because of the expense of the disk space.  In addition to making the data 
available to read on all servers, CouchDB supports simultaneous writing on all the replicas.  It also 
ensures that all writes are atomic, that all readers see consistent views, and that writing doesn't block  
reading;  that  is,  it  supports  ACID  transactions.   That  is  accomplished  by  using  Multi-Version 
Concurrency  Control  (MVCC)  which  is  a  common  feature  of  relational  databases  but  not  very 
common in NoSQL databases.  Write conflicts have to be resolved by the application, however.  Note  
that even though all readers always see internally consistent views, that doesn't necessarily mean that  
all readers will see the exact same view at the same time, because it can take some time for a write  
transaction to propagate to all the replicas. 

Queries are done very differently in CouchDB than other DBMS: the user defines “views” using 
JavaScript functions that create additional URLs to read later.  The programming paradigm for those  
functions is MapReduce, but the processing of the functions is not distributed to multiple servers so it 
doesn't get the performance boost of other systems with MapReduce (in particular see Hadoop HBase 
in the next section).

CMS uses CouchDB in production for several functions in its Workload Management systems [9].  
The installation is larger than the MongoDB installation, but still not very large: it has 3 replicas of a  
CouchDB database at CERN and 4 replicas of the same database at Fermilab.

7.3. Hadoop HBase
Hadoop HBase is a database implementation that is 
built  on  the  Hadoop  Distributed  FileSystem 
(HDFS).   HDFS is  designed for  large  clusters  of 
commodity computers and automatically distributes 
file blocks and replicates them across the cluster.  If
any replica is lost, HDFS automatically replaces it from other replicas.   So it is very reliable and 
works well with large amounts of data. On the other hand, it doesn't scale down very well to small  
installations.  Quite a few of the distributed sites in the Worldwide LHC Computing Grid (WLCG) use 
HDFS to store data with good results.  HDFS has a tunable replication level to control the number of  
copies that are kept for each data block.

HBase  is  modeled  after  Google's  BigTable,  which  is  designed  to  handle  data  structured  with 
billions of rows and millions of columns.  It is especially good for search engine-like applications. 
HBase is very good at distributed MapReduce, where processing is split up and mapped to run in 
parallel  on the computers that  contain the data,  and then the results  are  reduced into a combined 
answer.  It does not supply ACID guarantees for every kind of database interaction, however, just 
some of them.

HBase also has  an SQL compatibility  interface via  an add-on called Hive.   So this “NoSQL” 
database  does  support  SQL.   It  also  has  a  RESTful  interface  add-on  called  Stargate;  the  native 
interface is Java.  So if the RESTful interface is used along with distributed proxy caches it could also 
do well with the Slashdot Effect.



 HBase is used in production by ATLAS in its Distributed Data Manager called DQ2 (Don Quixote 
2), for both log analysis and accounting on a 12-node cluster [11].  When ATLAS first tried it for  
doing their accounting summary, they found it was 8 to 20 times faster than on the shared Oracle  
system they had, depending on the HDFS replication level.  They have since improved the accounting 
summary mechanism for both systems and found that for small examples the performance is similar  
on similar hardware.  They believe the HBase system, however, will be able to scale much better.

HBase has been recognized by the WLCG Database Technical  Evolution Group as having the 
greatest potential  impact on the LHC experiments out of all NoSQL technologies.  The CERN IT 
organization is setting up a cluster to try it.

7.4. Cassandra
Like HBase, Cassandra is also modeled after Google BigTable.  It is 
especially good at distribution over widely separated locations.  All 
nodes in the system are masters, and control is decentralized for good 
fault tolerance.  The system dynamically reconfigures itself as servers 
are added or removed, with no downtime overall. 

The keys and values in Cassandra can be any arbitrary data.  It has a concept of “column families” 
which are used like indexes in relational databases.  It has a tunable replication level like HBase.  It  
has  tunable  in-memory  caching  of  recently  read  data,  on  the  nodes  to  which  the  data  has  been 
replicated.  It also has tunable consistency, from always consistent to eventually consistent.  It supports 
MapReduce through Hadoop components.

Cassandra  was  originally  written  by  Facebook for  use  with  their  Inbox search  feature.   They 
abandoned it in late 2010, however, and now use HBase instead.

Cassandra is used in production by ATLAS PanDa monitoring [12].  They chose to host it at BNL 
on only 3 nodes that were quite high-powered: each node has 24 cores and 1 Terabyte of RAID0  
Solid-State Disks (SSDs).  They could perhaps have achieved similar performance out of Oracle on  
similar hardware, but since their Oracle installation supports a much larger application base it wouldn't  
have been economical to upgrade it all. 

7.5. Comparison summary

Table 2: Summary comparison of specific NoSQL DBs and Frontier characteristics

MongoDB CouchDB HBase Cassandra Frontier

Stored data format JSON JSON Arbitrary Arbitrary SQL types
Flexible queries Yes No No No Yes
Distributed write No Yes No Yes No
Handles Slashdot 

Effect well No Yes, best 
w/squid

If scaled 
sufficiently

If scaled 
sufficiently Yes

Does well with many 
reads of different data Yes Yes Yes Yes No

RESTful interface No Yes Add-on No Yes

Consistency Eventual ACID DB, 
eventual read Mixed Tunable ACID DB, 

eventual read
Distributed MapReduce No No Yes Add-on No
Replication Few copies Everything Tunable Tunable Caching



Table 2 shows a summary comparison of major characteristics between the 4 specific NoSQL database 
systems and Frontier.  The entries in the table summarize the points discussed in the sections above.

8. Conclusions
NoSQL Database Management Systems have a wide variety of characteristics.   Most  of  them are  
highly scalable, which is one of their major attractions.

Frontier with distributed Squid servers easily and efficiently add some of the same scalability to 
relational databases for applications that have a very large number of readers of the same data.  It also 
enables the clients to be geographically distant and still perform well.  On the other hand, it requires  
the application to be able to tolerate eventual consistency.

Of the 4 NoSQL systems considered, CouchDB is the one that can scale the easiest for the Slashdot  
Effect because its native REST-compliant interface enables it to be cached by HTTP proxies.  

Of all  current  popular  NoSQL systems,  Hadoop HBase appears to have the most  potential  for 
scaling up to handle very large applications.

There  are  applications  in  High Energy Physics  that  make  good use  of  the  strengths  of  many 
different Database Management Systems.
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